

Apisolex™ Polymer:

A New Tool for Injectable Solubility Enhancement, Improved Patient Experience, and Lifecycle Management

Lubrizol Life Science Health

October 16, 2023

Table of Contents

LLS Health Overview

New Technologies for 505(b)(2) & Hybrid Products

Apisolex[™] Polymers for Injectable Formulations

Questions?

Lubrizol Life Science Health (LLS Health)

Lubrizol partners with pharmaceutical companies to provide best-in-class polymers & CDMO services that accelerate new innovations to market.

Pharma Segment Overview

Multifunctional excipients which enable differentiated, patient-centric products

- Extended-release
- Solubility enhancement
- Permanent suspension
- Muco-adhesion
- Taste-masking

CDMO

A leading pharmaceutical contract development & manufacturing organization

- Insoluble APIs
- Sterile/aseptic products
- Long-acting implants & intravaginal rings

Nutraceuticals

Development & production of value-added nutraceutical ingredients

- Functional foods
- Dietary supplements
- Microencapsulation

Service offerings along the value chain provides simplification of supply chain Built for sustainability - A Berkshire Hathaway Company

Why Choose Lubrizol Life Science Health?

- Safe and effective excipient supply for over 40 years
 - Carbopol® polymers
 - Noveon® AA-1 polycarbophil
 - Pemulen[™] TR-2 emulsifiers
 - Pathway[™] TPU excipients
- Trusted CDMO services for over 20 years
 - Decades of collective experience in **nanomilling**

Shortcomings of Traditional Solubility Enhancers

Developability
Classification System (DCS)

of New Drugs

Low Efficiency/ Poor Dosing **Undesired Side Effects**

Complex Manufacturing Process

There is no one-size-fits-all excipient!

New tools are needed to serve the growing pipeline of challenging APIs

505(b)(2) and Hybrid Global Project Pipeline

Pipeline Dynamics

Types of Products

Top Therapeutic Areas

5000+ Global Projects

8% CAGR (2015-2023)

3 of 4 are Oral or Injectable

New dosage form

New combination

- Oncology
- Diabetes
- Pain Management
- Cardiovascular
- CNS Disorders
- HIV/AIDS

505(b)(2) reformulations enable innovation opportunities in small molecules

New Technologies Enable 505(b)(2) and Hybrid Products

Formulation **Objectives**

Patient-Centric Objectives

Business Objectives

Does it Work?

- Improve solubility/BA
- Increase drug loading
- Create new API combinations
- Improve stability

Is it Safe?

- Reduce dosing frequency/ pill burden
- Increase convenience
- Minimize side effects/toxicity

Does it Enable IP Protection?

- Access background IP from partner company
- · Develop new formulation IP
- Combine new and old technologies for synergies

Novel excipients and technologies address all three areas of product development

Apisolex™ Polymer for Injectable Solubility Enhancement

Polyamino acid-based multiblock copolymers designed for efficient micellar encapsulation

Does it Work?

Is it Patient-Friendly?

Does it Enable IP?

Enables up to 50,000-fold increase in solubility

Simple formulation process

Safe for parenteral use*

Fast, easy reconstitution

Strong composition of matter patents

Opportunities for formulation IP

^{*} For detailed safety/tox data, contact kevin.song@lubrizol.com

Apisolex™ Polymer Structure and Properties

- Multiblock copolymers: poly(sarcosine) block and D,L-mixed poly(amino acid) block
- Sarcosine: non-toxic, non-immunogenic, biocompatible, & biodegradable alternative to PEG
- Versatile synthesis: possibility of generating unique structures based on API requirements
- Highly efficient and streamlined drug product manufacturing process
- GMP manufacturing in place
- Robust IP protection with long patent life remaining

Created to solubilize hydrophobic APIs

Polymer Micelle Technology

Figure adapted from Frontiers in Pharmacology 2014, 5:77

Sequesters the drug in the hydrophobic part of the micelle to increase water solubility of APIs by up to 50,000-fold

Formulation Techniques - Method #1 - tBuOH and Water

Dissolution

Mixing/ Homogenization

Final Drug Product

Lyophilization

Sterile Filtration

Optional Sonication/Heating

Formulation Techniques - Method #2 - Other Organic Solvents

API
Dissolved in
Organic Solvent

Mixing/ Homogenization

Final Drug Product

Lyophilization

Diafiltration and Sterile Filter

Solution for stable API (with buffer)

Putting Apisolex Polymers to the Test

- Solubilization properties of Apisolex polymer were evaluated
- The solubilization properties of Apisolex polymer were evaluated in comparison with other excipients for a series of poorly water soluble active pharmaceutical ingredients.
- The experiments were conducted by nonoptimized, standard dispersion techniques (mixing or homogenization), followed by dilution or lyophilization and reconstitution.

Series A Results

Excipient API	Polysorbate 20	Polysorbate 80	Cremophor®1	Apisolex™
Amphotericin B	Fail	Fail	Fail	Pass
Cyclosporin A	Pass	Pass	Pass	Pass
Etoposide	Pass	Pass	Pass	Pass
Melphalan	Fail	Fail	Fail	Pass
Paclitaxel	Pass	Pass	Pass	Pass
BI-0001 ²	Pass	Pass	Pass	Pass
BI-0002 ²	Pass	Pass	Pass	Pass
BI-0003 ²	Pass	Pass	Pass	Pass
BI-0004 ²	Pass	Fail	Fail	Pass
BI-0005 ²	Pass	Pass	Pass	Pass
Excipient : API Ratio	100:1			100 : (5 - 10)

Compared to solubilizers that utilize a dissolution and dilution technique, only Apisolex polymer enabled successful solubilization of all APIs evaluated andat a much lower ratio of excipient to API.

Series B Results

Excipient API	TPGS ¹	Captisol ^{®2}	PEG-PLGA ³	Apisolex™
Amphotericin B	Fail	Fail	Fail	Pass
Cyclosporin A	Pass	Fail	Fail	Pass
Etoposide	Pass	Fail	Pass	Pass
Melphalan	Pass	Pass	Pass	Pass
Paclitaxel	Fail	Fail	Pass	Pass
BI-0001 ⁴	Fail	Fail	Fail	Pass
BI-0002 ⁴	Fail	Fail	Fail	Pass
BI-0003 ⁴	Pass	Fail	Fail	Pass
BI-0004 ⁴	Fail	Fail	Fail	Pass
BI-0005 ⁴	Fail	Fail	Fail	Pass

Compared to solubilizers processed using the same lyophilization and reconstitution technique, only Apisolex polymer enabled successful solubilization of all APIs evaluated.

¹ D- α -tocopheryl polyethylene glycol succinate

² Cyclodextrin (Captisol® SBE-AE-Beta-CD is a registered trademark of Ligand Pharmaceuticals Incorporated)

³ Polyethylene glycol-poly lactic acid-co-glycolic acid

⁴ APIs for this study were provided by Boehringer Ingelheim Pharm. Inc.

Series C Results

API	Solubility in Water (µg/ml)	Solubility in Formulation with Apisolex Polymer (µg/ml)	Solubility Increase with Apisolex Polymer (Fold)
BI-0001 ¹	20	2,000	100
BI-0002 ¹	8	2,000	250
BI-0003 ¹	0.4	20,000	50,000
BI-0004 ¹	1.2	10,000	8,333
BI-0005 ¹	4	5,000	1,250

Additional experiments conducted for experimental APIs BI-0001 – BI-0005 showed that **Apisolex polymer increased the drug solubility up to 50,000-fold.**

Safety and Toxicology

	Test	Results	
Systemic toxicity	Tolerability (rats and mice)	Test article was well tolerated by rats and mice at doses as high as 1,500 mg/kg	
	32-Day IV Injection Toxicity with 28-day recovery (rats)	No treatment-related effects were detected	
Pharmaco- kinetics	[14C] labelled Apisolex IV dose in male and female rats	Can be distributed to distant organs but does not accumulate Tissue: plasma AUC _{0-t} ratios <1.0	

Safe for Parenteral Use

(conclusion based on animal testing and pre-IND packages)

Apisolex™ Polymers: Looking Forward

- Scale up and GMP manufacturing optimization ongoing
- Excipient Drug Master File (DMF)
- Safety & Toxicology Future work to include:
 - Ames
 - *in vitro* cytogenicity
 - in vivo chromosomal damage
 - Six month repeat dose

Apisolex Polymer Medicine Maker 2022 Innovation Award Winner

- The Medicine Maker Innovation Awards showcase new drug development and manufacturing technologies
- Apisolex Polymer stood out from a record numbers of nominations, winning the reader vote

"Our hope is that winning this award will allow drug formulators struggling with water-insoluble APIs to learn about the polymer's benefits so that **more lifechanging medications can make it to market.**"

Selecting the Right Partner

The ideal excipient/technology provider will have **deep experience in pharma** and provide:

- Regulatory Support
 - Understanding of global requirements
 - Safety/toxicity data for intended purpose
- Quality and Manufacturing Assurance
 - GMP manufacturing and documentation
 - Reproducible scale-up capability
 - Stability data
- A Collaborative Mindset with Secure, Long-Term Supply

Visit our booth to discuss your next project!

Solubility-Enhancing Excipients from LLS Health

Stable amorphous solid dispersions with up to 80% drug loading

Learn more at apinovex.com

Injectable-Grade Apisolex™

Increases the solubility of hydrophobic APIs up to **50,000-fold**

Learn more at apisolex.com

Thank you!

Nick DiFranco

Global Market Manager Oral Drug Delivery/Novel Excipients

Nicholas.DiFranco@lubrizol.com Connect with me on LinkedIn!

Rob Lee

President **CDMO** Division

Rob.Lee@lubrizol.com Connect with me on LinkedIn!

Scan to learn more and request a sample today!

or visit go.lubrizol.com/podd

